

LA-UR-17-27551

Approved for public release; distribution is unlimited.

Title: Bounding the 239Pu(n,f) cross-section

Author(s): Hejnal, Brooke Ellen

Intended for: Report

Issued: 2017-08-22

Bounding the ²³⁹Pu(n,f) cross-section

Brooke Hejnal

3 August 2017

Thank you to Denise and Diane for guidance and to Fredrik, Morgan, and Kyle for input on the project. Funded by JA4X.

Introduction-Goal

GOAL: Bounding the neutroninduced ²³⁹Pu fission cross section (n,f), ²³⁹Pu(n,f), for 50 keV to 20 MeV

Introduction-Reaching the Goal

GOAL: Bounding the neutron-induced ²³⁹Pu fission cross section (n,f), ²³⁹Pu(n,f), for 50 keV to 20 MeV

Aims towards this goal:

- Extract all ²³⁹Pu(n,f) experimental data entering the current evaluation
- Choose data sets likely to influence the evaluation.
- Investigate which uncertainty sources are expected for these observables and develop an algorithm to estimate total covariances.
- Investigate whether uncertainties of chosen data sets are reasonable and update them.
- Mentor will re-evaluate with new information.

Introduction-Current Evaluation

- The current ²³⁹Pu(n,f) evaluation is provided by the neutroncross section standards project coordinated by the IAEA. (https://www-nds.iaea.org/standards/)
- using the "GMA" code and database with a Generalized Least Squares algorithm. Poenitz, ANL/NDM-139 (1997):

$$\delta = (A^{T}C_{M}^{-1}A)^{-1}A^{T}C_{M}^{-1}M$$

where δ is the adjustment vector, \mathbf{A} is the coefficient matrix, \mathbf{C} is the correlation matrix of the measurement vector \mathbf{M} , superscript T denotes the transpose, and -1 the inverse matrices. The variance-covariance matrix of δ follows from error propagation:

$$\mathbf{C}_{\delta} = (\mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathrm{M}}^{-1} \mathbf{A})^{-1}.$$

• GMA database contains data of the following reactions: 6 Li(n, α), 10 B(n, $\alpha_{(1)}$), Au(n, γ), 235 U(n,f), 238 U(n,f), 238 U(n, γ), 239 Pu(n,f), averaged Cf fission spectrum

Extract all ²³⁹Pu(n,f) experimental data entering the current evaluation

Data bases we Investigated

"Standards Report"

• gave a list of ²³⁹Pu(n,f) cross section data sets in Table 7.1 of IAEA Report STI/PUB/1291 (2007).

EXFOR

• extracted these data sets and partial uncertainties from EXFOR (https://www-nds.iaea.org/exfor/exfor.htm) and an EXFOR-like library provided by R. Capote on 5/25/2017 in private communication.

GMA

• extracted total uncertainties for each data set from GMA output file provided by R. Capote on 5/12/2017 in private communication.

Data Types

Absolute: ²³⁹Pu(n,f) cross section measured over its given energy range including the normalization

Shape: ²³⁹Pu(n,f) cross section without a set normalization

Data Types

Clean Ratio Absolute: ²³⁹Pu(n,f) cross section measured in ratio to a reference isotope in the same fission detector

Clean Ratio Shape: Clean Ratio Data without a set normalization

Examples: ²³⁹Pu(n,f)/²³⁵U(n,f), ²³⁹Pu(n,f)/²³⁸U(n,f)

Data Types

Indirect Ratio Absolute: ²³⁹Pu(n,f) cross section measured in ratio to a reference isotope, which is measured in a different detector

Indirect Ratio Shape: Indirect Ratio Data without a set normalization

Examples: 239 Pu(n,f)/ 10 B(n, α), 239 Pu(n,f)/ 6 Li(n, α)

Statistics on Extracted Data

Data Type	Absolute	Shape	Clean Ratio Absolute	Clean Ratio Shape	Indirect Ratio Absolute	Clean Ratio Shape
Number of Data Sets	16	3	17 (16 relative to ²³⁵ U(n,f), 1 relative to ²³⁸ U(n,f))	6 (4 relative to ²³⁵ U(n,f), 2 relative to ²³⁸ U(n,f))	0	19 (17 relative to 10 B(n, α), 2 relative to 6 Li(n, α))

Choose data sets likely to influence the evaluation

Choosing the Data Sets

Criteria:

- Energies above 50 keV
- Low Total Uncertainties Compared to Other Data Sets
- Broad Energy Range
- Calibration Point
- Missing Partial Uncertainties in EXFOR entry

Choosing the Data Sets

Data Set

611

644

615

407

521

Data Type

absolute

absolute

absolute

ratio shape ²³⁸U(n,f)

shape

1038	absolute	2.3	7.7	1.00E+00	5.50E+00	30670
640	absolute	2.4	3.1	1.50E-01	9.60E-01	10314
620	absolute	2.8	6.6	3.00E-02	9.80E-01	20567
8002	ratio absolute ²³⁵ U(n,f)	0.7	3.8	2.00E-01	1.30E+01	14271
602	ratio absolute ²³⁵ U(n,f)	0.8	6.8	2.53E-08	1.00E+01	
654	ratio absolute ²³⁵ U(n,f)	1.0	5.7	2.40E-02	7.50E+00	
685	ratio absolute ²³⁵ U(n,f)	1.1	1.1	1.45E+01	1.45E+01	
653	ratio absolute ²³⁵ U(n,f)	1.2	6.9	1.20E-01	7.00E+00	40824
1014	ratio absolute ²³⁵ U(n,f)	1.3	1.6	8.50E-01	6.00E + 01	13801
600	ratio absolute ²³⁵ U(n,f)	1.7	27.4	8.50E-04	3.00E+01	10562
605	ratio absolute ²³⁵ U(n,f)	1.7	15.3	5.50E-03	1.00E+00	20363
608	ratio absolute ²³⁵ U(n,f)	2.0	12.6	4.50E-02	5.00E-01	21463
609	ratio absolute ²³⁵ U(n,f)	2.0	2.1	1.00E+00	1.40E+01	21195
631	ratio absolute ²³⁵ U(n,f)	2.1	2.1	2.53E-08	1.50E-01	
1012	ratio absolute ²³⁵ U(n,f)	2.1	5.8	5.70E-01	2.00E+02	41455
			•			
630	ratio shape $^{10}\mathrm{B}(\mathrm{n},\alpha)$	2.3	5.0	2.53E-08	1.50E-01	
			•			
			•			
F 0 F		0.0		1 505 04	O KOT OO	
535	ratio shape $^6\text{Li}(n,\alpha)$	$\frac{2.3}{2.5}$	4.1	1.50E-04	9.50E-02	10766
536	ratio shape ²³⁵ U(n,f)	0.7	6.5	2.53E-08	2.10E+01	12766
1029	ratio shape ²³⁵ U(n,f)	1	2.5	5.00E-01	2.00E+02	
549	ratio shape $^{235}U(n,f)$	2.0	3.6	1.50E-04	1.50E-02	10051
635	ratio shape ²³⁵ U(n,f)	3.1	123.1	2.53E-08	2.40E-02	10084
837	ratio shape ²³⁸ U(n,f)	2.6	3.7	1.30E+01	1.90E+01	

3.7

2.3

6.3

4.8

4.00E-01

1.00E + 00

1.40E + 00

2.10E + 01

20786

 $Min \delta$

1.0

2.0

2.1

 $\text{Max } \delta$

2.0

2.1

 $\min E$

1.45E + 01

1.45E + 01

5.00E+00

 $\operatorname{Max} E$

1.45E + 01

1.45E + 01

5.00E+00

EXFOR #

30634

Investigate which uncertainty sources are expected for these observables and develop an algorithm to estimate total covariances.

Absolute Data

Attenuation

Background Determination

Correction for Isotopic Impurities in the Sample

Detector Efficiency

Energy Resolution

Fission Fragment Angular Distribution Correction

Multiple Scattering

Neutron Flux

Sample Mass

Statistics

Shape Data

Attenuation

Background Determination

Correction for Isotopic Impurities in the Sample

Detector Efficiency

Energy Resolution

Fission Fragment Angular Distribution Correction

Multiple Scattering

Neutron Flux

Sample Mass

Statistics

Clean Ratio Absolute Data

239 Pu(n,f)

Correction for Isotopic Impurities

Detector Efficiency

Sample Mass

Reference Isotope

Correction for Isotopic

Impurities

Detector Efficiency

Sample Mass

Combined

Attenuation

Background

Determination

Energy Resolution

Angular Correction

Multiple Scattering

Neutron Flux

Statistics

Clean Ratio Shape Data

239 Pu(n,f)

Correction for Isotopic

Impurities

Detector Efficiency

Sample Mass

Reference Isotope

Correction for Isotopic

Impurities

Detector Efficiency

Sample Mass

Combined

Attenuation

Background

Determination

Energy Resolution

Angular Correction

Multiple Scattering

Neutron Flux

Statistics

Indirect Ratio Absolute Data

239 Pu(n,f)

Angular Correction

Attenuation

Background Determination

Correction for Isotopic

Impurities

Detector Efficiency

Energy Resolution

Multiple Scattering

Sample Mass

Time of Flight Length

Reference Isotope

Angular Correction

Attenuation

Background Determination

Correction for Isotopic

Impurities

Detector Efficiency

Energy Resolution

Multiple Scattering

Sample Mass

Time of Flight Length

Combined

Neutron Flux

Statistics

Sources of UncertaintyIndirect Ratio Shape Data

239 Pu(n,f)

Angular Correction

Attenuation

Background Determination

Correction for Isotopic

Impurities

Detector Efficiency

Energy Resolution

Multiple Scattering

Sample Mass

Time of Flight Length

Reference Isotope

Angular Correction

Attenuation

Background Determination

Correction for Isotopic

Impurities

Detector Efficiency

Energy Resolution

Multiple Scattering

Sample Mass

Time of Flight Length

Combined

Neutron Flux

Statistics

Covariance Algorithm

Example: Shape Measurement

ABSOLUTE CROSS SECTION

$$\sigma(E_i) = n\xi(E_i)$$

 E_i i^{th} energy bin n set normalization σ absolute cross section

shape measurement

LINEAR ERROR PROPAGATION

$$Cov(\sigma_i, \sigma_j) = \frac{\partial \sigma}{\partial n} \bigg|_{E_i} (\Delta n)^2 \frac{\partial \sigma}{\partial n} \bigg|_{E_j} + \frac{\partial \sigma}{\partial \xi} \bigg|_{E_i} Cov(\xi_i, \xi_j) \frac{\partial \sigma}{\partial \xi} \bigg|_{E_j}$$

Covariance Algorithm

Example: Shape Measurement

$$Cov(\xi_{i}, \xi_{j}) = \Delta b_{i} \Delta b_{j} Cor(b_{i}, b_{j})$$

$$+ \Delta \alpha_{i} \Delta \alpha_{j} Cor(\alpha_{i}, \alpha_{j})$$

$$+ \Delta \beta_{i} \Delta \beta_{j} Cor(\beta_{i}, \beta_{j})$$

$$+ \Delta \epsilon_{i} \Delta \epsilon_{j} Cor(\epsilon_{i}, \epsilon_{j})$$

$$+ \Delta c_{i} \Delta c_{j} \delta_{ij}$$

$$+ \Delta \zeta_{i} \Delta \zeta_{j} Cor(\zeta_{i}, \zeta_{j})$$

$$+ \frac{\partial \xi}{\partial E_{i}} \Big|_{E_{i}} \Delta E_{i} \Delta E_{j} Cor(E_{i}, E_{j}) \frac{\partial \xi}{\partial E_{j}} \Big|_{E_{j}}$$

Investigate whether uncertainties of chosen data sets are reasonable and update them.

Total Uncertainty Ranges

Data Set	Data Type	$\operatorname{Min}\delta$	$\operatorname{Max} \delta$	$\min E$	$\operatorname{Max} E$	EXFOR #
611	absolute	1.0	1.0	1.45E+01	1.45E+01	
644	absolute	2.0	2.0	1.45E + 01	1.45E + 01	30634
615	absolute	2.1	2.1	5.00E+00	5.00E+00	
1038	absolute	2.3	7.7	1.00E+00	5.50E+00	30670
640	absolute	2.4	3.1	1.50E-01	9.60E-01	10314
620	absolute	2.8	6.6	3.00E-02	9.80E-01	20567
			ı			

8002	ratio absolute ²³⁵ U(n,f)	0.7	3.8	2.00E-01	1.30E+01	14271
602	ratio absolute $^{235}U(n,f)$	0.8	6.8	2.53E-08	1.00E+01	
654	ratio absolute ²³⁵ U(n,f)	1.0	5.7	2.40E-02	7.50E+00	
685	ratio absolute ²³⁵ U(n,f)	1.1	1.1	1.45E+01	1.45E + 01	
653	ratio absolute ²³⁵ U(n,f)	1.2	6.9	1.20E-01	7.00E+00	40824
1014	ratio absolute ²³⁵ U(n,f)	1.3	1.6	8.50E-01	6.00E + 01	13801
600	ratio absolute ²³⁵ U(n,f)	1.7	27.4	8.50E-04	3.00E+01	10562
605	ratio absolute ²³⁵ U(n,f)	1.7	15.3	5.50E-03	1.00E+00	20363
608	ratio absolute ²³⁵ U(n,f)	2.0	12.6	4.50E-02	5.00E-01	21463
609	ratio absolute ²³⁵ U(n,f)	2.0	2.1	1.00E+00	1.40E+01	21195
631	ratio absolute ²³⁵ U(n,f)	2.1	2.1	2.53E-08	1.50E-01	
1012	ratio absolute ²³⁵ U(n,f)	2.1	5.8	5.70E-01	2.00E+02	41455

			•			
535	ratio shape $^6\mathrm{Li}(\mathrm{n},\alpha)$	2.3	4.1	1.50E-04	9.50E-02	
536	ratio shape ²³⁵ U(n,f)	0.7	6.5	2.53E-08	2.10E+01	12766
1029	ratio shape ²³⁵ U(n,f)	1	2.5	5.00E-01	2.00E+02	
549	ratio shape $^{235}U(n,f)$	2.0	3.6	1.50E-04	1.50E-02	
635	ratio shape ²³⁵ U(n,f)	3.1	123.1	2.53E-08	2.40E-02	10084
837	ratio shape ²³⁸ U(n,f)	2.6	3.7	1.30E+01	1.90E+01	
407	ratio shape ²³⁸ U(n,f)	3.7	6.3	4.00E-01	1.40E+00	
521	shape	2.3	4.8	1.00E+00	2.10E+01	20786

ratio shape ${}^{10}\mathrm{B}(\mathrm{n},\alpha)$

Uncertainty Ranges found in EXFOR for Absolute Data

Data Sets	611	1038	620
Uncertainty Data Types	E,CS,C	CS,C	E,CS,C
P1		1.5	1.0
P2	0.3 - 0.3	0.9 - 1.8	1.5 - 1.8
P3	0.36		0.5 - 0.70
P4	1.04	1.47	1.84 - 1.94
P5			1.0 - 1.0
P6		1.15 - 1.5	0.8 - 1.0
P7	0.3		
P8	1.01 - 1.01		2.82 - 26.3
P9			
P10		5.0	0.5 - 0.5
P11			

- P1 Sample Mass
- P2 Statistics
- P3 Attenuation
- P4 Detector Efficiency
- P5 Fission Fragment Angular Distribution Correction

- **P6** Background Determination
- **P7** Time of Flight Length Uncertainty
- **P8** Energy Resolution
- **P9** Neutron Flux
- **P10** Multiple Scattering
- **P11** Correction for Isotopic Impurities

Updated Uncertainty Ranges

Data Sets	611	1038	620
Uncertainty Data Types	E,CS,C	CS,C	E,CS,C
P1	1.0	1.5	1.0
P2	0.3 - 0.3	0.9 - 1.8	1.5 - 1.8
P3	0.36	ok	0.5 - 0.70
P4	1.04	1.47	1.84 - 1.94
P5	ok	ok	1.0 - 1.0
P6	0.5	1.15 - 1.5	0.8 - 1.0
P7	0.3	ok	ok
P8	1.01 - 1.01	?	2.82 - 26.3
P9	?	ok	?
P10	ok	5.0	0.5 - 0.5
P11	ok	ok	ok

P1 - Sample Mass

P2 - Statistics

P3 - Attenuation

P4 – Detector Efficiency

P5 - Fission Fragment Angular Distribution Correction

P6 - Background Determination

P7 - Time of Flight Length Uncertainty

P8 - Energy Resolution

P9 - Neutron Flux

P10 - Multiple Scattering

P11 - Correction for Isotopic Impurities

Uncertainty Ranges Found in EXFOR for Ratio Data

Data Sets	8002	602	685	630	535	536	1029
Uncertainty Data Types	CS,C	E,CS,C	E,CS,C	E,CS	E,CS	E,CS	CS,C
P1		0.63 - 1.99	0.94				0.94
P2	0.3 - 1.5			0.7 - 0.8	0.2 - 1.2	0.4 - 1.7	0.62 - 2.27
P3			0.2 - 0.2	1.0 - 1.0			
P4		0.2 - 0.2		0.5 - 0.5	3.16 - 4.07	0.3 - 0.3	
P5							
P6	0.4 - 3.2	0.1 - 0.7		1.0 - 1.0	0.1 - 0.2	0.3 - 0.3	
P7		0.3 - 2.22		5.0 - 5.0		1.0 - 1.0	
P8		0.0 - 21.7	1.0 - 1.0	5.0 - 5.0	0.1 - 33.3	1.0 - 1.0	
P9							
P10		0.2 - 0.3	0.2 - 0.2	1.0 - 1.0			
P11			0.2				
M1	2	0.63 - 1.99	0.94				0.99
M2	2		0.4 - 0.4	0.7 - 0.8	0.2 - 1.2	0.4 - 1.7	0.62 - 2.27
M3				1.0 - 1.0			
M4				1.0 - 1.0	3.0 - 3.7	0.3 - 0.3	
M5							
M6	0.3 - 3.1						
M10			0.2 - 0.2				
M11			0.3				

Updated Uncertainty Ranges

Data Sets	8002	602	685	630	535	536	1029
Uncertainty Data Types	CS,C	E,CS,C	E,CS,C	E,CS	E,CS	E,CS	CS,C
P1	2	0.63 - 1.99	0.94	ok	ok	ok	0.94
P2	0.3 - 1.5	?	?	0.7 - 0.8	0.2 - 1.2	0.4 - 1.7	0.62 - 2.27
P3	ok	ok	0.2 - 0.2	1.0 - 1.0	?	?	ok
P4	ok	0.2 - 0.2	ok	0.5 - 0.5	3.16 - 4.07	0.3 - 0.3	ok
P5	ok	ok	ok	?	?	?	ok
P6	0.4 - 3.2	0.1 - 0.7	? .	1.0 - 1.0	0.1 - 0.2	0.3 - 0.3	0.4-3.2
P7	3mm	0.3 - 2.22	ok	5.0 - 5.0	ok	1.0 - 1.0	3mm
P8	ok	0.0 - 21.7	1.0 - 1.0	5.0 - 5.0	0.1 - 33.3	1.0 - 1.0	ok
P9	ok	ok	ok	ok	ok	ok	ok
P10	ok	0.2 - 0.3	0.2 - 0.2	1.0 - 1.0	?	ok	ok
P11	ok	ok	0.2	ok	ok	ok	ok
M1	2	0.63 - 1.99	0.94	ok	ok	ok	0.99
M2	-2	?	0.4 - 0.4	0.7 - 0.8	0.2 - 1.2	0.4 - 1.7	0.62 - 2.27
M3	ok	ok	ok	1.0 - 1.0			ok
M4	ok	ok	ok	1.0 - 1.0	3.0 - 3.7	0.3 - 0.3	ok
M5	ok	ok	ok	ok	ok	ok	ok 0.3-3.1
M6	0.3 - 3.1	ok	ok	ok	?	ok	0.3-3.1
M10	ok	ok	0.2 - 0.2	ok	?	ok ?	ok ?
M11	?	?	0.3	?	?	?	?

Example: Tovesson Data Set

Example: Tovesson Data Set

Summary

GOAL: Bounding the neutron-induced ²³⁹Pu fission cross section (n,f), ²³⁹Pu(n,f), for 50 keV to 20 MeV

Aims towards this goal:

- Extract all ²³⁹Pu(n,f) experimental data entering the current evaluation
- Choose data sets likely to influence the evaluation.
- Investigate which uncertainty sources are expected for these observables and develop algorithm to estimate total covariances.
- Investigate whether uncertainties of chosen data sets are reasonable and update them.

To-Do Mentor

- GMA studies to see how these changes affect the evaluated uncertainties
- GMA studies on missing cross-correlations between experimental data.
- See if the thermal ²³⁹Pu(n,f) cross-section has an impact.

Thank you for your attention

Back Up Slides

Table of Selected Data Sets

615 absolute 2.1 2.1 5.00E+00 5.00E+00	
615 absolute 2.1 2.1 5.00E+00 5.00E+00	
	0634
1038 absolute 2.3 7.7 1.00E+00 5.50E+00 3	0670
640 absolute 2.4 3.1 1.50E-01 9.60E-01 1	0314
620 absolute 2.8 6.6 3.00E-02 9.80E-01 2	0567
622 absolute 2.8 7.0 8.00E-01 2.60E+00 2	0570
619 absolute 2.9 2.9 2.40E-02 2.40E-02 2	0584
621 absolute 2.9 3.2 9.50E-03 2.00E-01 2	0569
	0618
612 absolute 3.8 5.7 1.40E+01 1.45E+01 2	0779
672 absolute 4.9 5.4 5.40E-01 1.60E+00	
616 absolute 5.4 5.4 1.90E+01 1.90E+01	
617 absolute 5.8 5.8 8.50E+00 8.50E+00	
	1468
657 absolute 9.3 9.3 1.40E+01 1.40E+01	
	4271
602 ratio absolute ²³⁵ U(n,f) 0.8 6.8 2.53E-08 1.00E+01	
654 ratio absolute ${}^{235}\text{U}(\text{n,f})$ 1.0 5.7 2.40E-02 7.50E+00	
685 ratio absolute ²³⁵ U(n,f) 1.1 1.45E+01 1.45E+01	
	0824
	3801
	0562
	0363
	1463
	1195
631 ratio absolute ²³⁵ U(n,f) 2.1 2.1 2.53E-08 1.50E-01	
	1455
637 ratio absolute ${}^{235}\text{U}(\text{n,f})$ 2.3 2.3 1.45E+01 1.45E+01	
	0086
633 ratio absolute ²³⁵ U(n,f) 3.3 3.3 1.50E+01 1.50E+01	
	0588
668 ratio absolute ²³⁸ U(n,f) 10.3 10.3 1.40E+01 1.40E+01	
1024 ratio shape ${}^{10}{\rm B}({\rm n},\alpha)$ 0.8 4.6 1.50E-04 1.50E-02	
	0751
548 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 1.7 9.6 1.50E-04 2.40E-02	
1 (//	0001
630 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 2.3 5.0 2.53E-08 1.50E-01	
677 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 3.0 5.7 1.50E-04 9.50E-03	
676 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 3.4 32.6 2.53E-08 1.50E-01	
679 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 3.7 20.1 1.50E-04 1.50E-02	
680 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 3.7 4.2 1.50E-04 2.40E-02	
681 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 3.7 8.2 2.53E-08 1.50E-02	
682 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 3.7 10.0 2.53E-08 1.50E-02	
678 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 4.7 31.6 1.50E-04 9.50E-03	
662 ratio shape ${}^{10}\text{B}(\text{n},\alpha)$ 5.4 11.9 1.50E-04 9.50E-03	

Table of Selected Data Sets

663	ratio shape $^{10}{\rm B(n,}\alpha)$	5.4	15.6	1.50E-04	3.00E-02	
661	ratio shape $^{10}\mathrm{B}(\mathrm{n},\alpha)$	6.4	7.7	1.50E-04	9.50E-02	
660	ratio shape $^{10}\mathrm{B}(\mathrm{n},\alpha)$	7.1	7.5	1.50E-04	9.50E-02	
547	ratio shape $^{10}\mathrm{Li}(\mathrm{n},\alpha)$	1.5	5.1	2.53E-08	4.50E-03	
535	ratio shape $^{10}\mathrm{Li}(\mathrm{n},\alpha)$	2.3	4.1	1.50E-04	9.50E-02	
536	ratio shape ²³⁵ U(n,f)	0.7	6.5	2.53E-08	2.10E+01	12766
549	ratio shape ²³⁵ U(n,f)	2.0	3.6	1.50E-04	1.50E-02	
635	ratio shape ²³⁵ U(n,f)	3.1	123.1	2.53E-08	2.40E-02	10084
837	ratio shape ²³⁸ U(n,f)	2.6	3.7	1.30E + 01	1.90E+01	
407	ratio shape $^{238}U(n,f)$	3.7	6.3	4.00E-01	1.40E+00	
521	shape	2.3	4.8	1.00E+00	2.10E+01	20786
589	shape	2.9	3.9	1.50E-03	9.60E-01	20428
671	shape	4.3	25.8	3.00E-02	3.00E+00	21075